# BASIC TECHNICAL MATHEMATICS 

ALLYN J. WASHINGTON



# Basic Technical <br> Mathematics with Calculus 

This page intentionally left blank

## TENTH EDITION

# Basic Technical Mathematics with Calculus 

Allyn J. Washington<br>Dutchess Community College

## PEARSON

Boston Columbus Indianapolis New York San Francisco Upper Saddle River Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Editorial Director: Vernon R. Anthony<br>Acquisitions Editor: Sara Eilert<br>Editorial Assistant: Doug Greive<br>Director of Marketing: David Gesell<br>Marketing Manager: Stacey Martinez<br>Senior Marketing Coordinator: Alicia Wozniak<br>Senior Marketing Assistant: Les Roberts<br>Senior Managing Editor: JoEllen Gohr<br>Senior Project Manager: Rex Davidson<br>Senior Operations Supervisor: Pat Tonneman<br>Creative Director: Andrea Nix

Art Director: Diane Y. Ernsberger
Cover Designer: Candace Rowley
Cover Image: Gencho Petkov/Shutterstock.com
Media Project Manager: Christina Maestri
Full-Service Project Management: Nancy Kincade/
PreMediaGlobal
Composition: PreMediaGlobal USA Inc.
Printer/Binder: Edwards Brothers Malloy State
Cover Printer: Lehigh/Phoenix Color
Text Font: Times Roman

Copyright © 2014, 2009, and 2005 by Pearson Education, Inc. All rights reserved. Manufactured in the United States of America. This publication is protected by Copyright, and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission(s) to use material from this work, please submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax your request to 201-236-3290.

## Library of Congress Cataloging-in-Publication Data

Washington, Allyn J.
Basic technical mathematics with calculus / Allyn J. Washington, Dutchess Community College. - Tenth edition. pages cm
Includes indexes.
ISBN-13: 978-0-13-311653-3 (hardcover)
ISBN-10: 0-13-311653-0 (hardcover)

1. Mathematics. 2. Calculus. I. Title.

QA37.3.W38 2014
510-dc23
2012039828

10987654321

## Contents

1 Basic Algebraic Operations ..... 1
1.1 Numbers ..... 2
1.2 Fundamental Operations of Algebra ..... 6
1.3 Calculators and Approximate Numbers ..... 11
1.4 Exponents ..... 16
1.5 Scientific Notation ..... 21
1.6 Roots and Radicals ..... 24
1.7 Addition and Subtraction of Algebraic Expressions ..... 26
1.8 Multiplication of Algebraic Expressions ..... 30
1.9 Division of Algebraic Expressions ..... 32
1.10 Solving Equations ..... 35
1.11 Formulas and Literal Equations ..... 38
1.12 Applied Word Problems ..... 41
Equations ..... 45
Quick Chapter Review ..... 46
Review Exercises ..... 46
Practice Test ..... 48
2 Geometry ..... 49
2.1 Lines and Angles ..... 50
2.2 Triangles ..... 53
2.3 Quadrilaterals ..... 60
2.4 Circles ..... 63
2.5 Measurement of Irregular Areas ..... 67
2.6 Solid Geometric Figures ..... 71
Equations ..... 75
Quick Chapter Review ..... 76
Review Exercises ..... 76
Practice Test ..... 79
3 Functions and Graphs ..... 80
3.1 Introduction to Functions ..... 81
3.2 More about Functions ..... 84
3.3 Rectangular Coordinates ..... 89
3.4 The Graph of a Function ..... 91
3.5 Graphs on the Graphing Calculator ..... 96
3.6 Graphs of Functions Defined by Tables of Data ..... 101
Quick Chapter Review ..... 105
Review Exercises ..... 105
Practice Test ..... 107
4 The Trigonometric Functions ..... 108
4.1 Angles ..... 109
4.2 Defining the Trigonometric Functions ..... 112
4.3 Values of the Trigonometric Functions ..... 115
4.4 The Right Triangle ..... 119
4.5 Applications of Right Triangles ..... 124
Equations ..... 129
Quick Chapter Review ..... 130
Review Exercises ..... 130
Practice Test ..... 134
5 Systems of Linear Equations; Determinants ..... 135
5.1 Linear Equations ..... 136
5.2 Graphs of Linear Functions ..... 139
5.3 Solving Systems of Two Linear Equations in Two Unknowns Graphically ..... 143
5.4 Solving Systems of Two Linear Equations in Two Unknowns Algebraically ..... 147
5.5 Solving Systems of Two Linear Equations in Two Unknowns by Determinants ..... 154
5.6 Solving Systems of Three Linear Equations in Three Unknowns Algebraically ..... 159
5.7 Solving Systems of Three Linear Equations in Three Unknowns by Determinants ..... 164
Equations ..... 169
Quick chapter Review ..... 170
Review Exercises ..... 171
Practice Test ..... 174
6 Factoring and Fractions ..... 175
6.1 Special Products ..... 176
6.2 Factoring: Common Factor and Difference of Squares ..... 179
6.3 Factoring Trinomials ..... 184
6.4 The Sum and Difference of Cubes ..... 190
6.5 Equivalent Fractions ..... 191
6.6 Multiplication and Division of Fractions ..... 196
6.7 Addition and Subtraction of Fractions ..... 200
6.8 Equations Involving Fractions ..... 206
Equations ..... 211
Quick Chapter Review ..... 211
Review Exercises ..... 211
Practice Test ..... 213
7 Quadratic Equations ..... 214
7.1 Quadratic Equations; Solution by Factoring ..... 215
7.2 Completing the Square ..... 220
7.3 The Quadratic Formula ..... 222
7.4 The Graph of the Quadratic Function ..... 226
Equations ..... 231
Quick Chapter Review ..... 231
Review Exercises ..... 231
Practice Test ..... 233
8 Trigonometric Functions of Any Angle ..... 234
8.1 Signs of the Trigonometric Functions ..... 235
8.2 Trigonometric Functions of Any Angle ..... 237
8.3 Radians ..... 243
8.4 Applications of Radian Measure ..... 247
Equations ..... 253
Quick Chapter Review ..... 254
Review Exercises ..... 254
Practice Test ..... 256
9 Vectors and Oblique Triangles ..... 257
9.1 Introduction to Vectors ..... 258
9.2 Components of Vectors ..... 262
9.3 Vector Addition by Components ..... 266
9.4 Applications of Vectors ..... 271
9.5 Oblique Triangles, the Law of Sines ..... 276
9.6 The Law of Cosines ..... 283
Equations ..... 287
Quick Chapter Review ..... 288
Review Exercises ..... 288
Practice Test ..... 290
10 Graphs of the Trigonometric Functions ..... 291
10.1 Graphs of $y=a \sin x$ and $y=a \cos x$ ..... 292
10.2 Graphs of $y=a \sin b x$ and $y=a \cos b x$ ..... 295
10.3 Graphs of $y=a \sin (b x+c)$ and $y=a \cos (b x+c)$ ..... 298
10.4 Graphs of $y=\tan x, y=\cot x$, $y=\sec x, y=\csc x$ ..... 302
10.5 Applications of the Trigonometric Graphs ..... 304
10.6 Composite Trigonometric Curves ..... 307
Equations ..... 312
Quick Chapter Review ..... 312
Review Exercises ..... 312
Practice Test ..... 314
11 Exponents and Radicals ..... 315
11.1 Simplifying Expressions with Integral Exponents ..... 316
11.2 Fractional Exponents ..... 320
11.3 Simplest Radical Form ..... 324
11.4 Addition and Subtraction of Radicals ..... 328
11.5 Multiplication and Division of Radicals ..... 330
Equations ..... 334
Quick Chapter Review ..... 334
Review Exercises ..... 334
Practice Test ..... 336
12 Complex Numbers ..... 337
12.1 Basic Definitions ..... 338
12.2 Basic Operations with Complex Numbers ..... 341
12.3 Graphical Representation of Complex Numbers ..... 344
12.4 Polar Form of a Complex Number ..... 346
12.5 Exponential Form of a Complex Number ..... 348
12.6 Products, Quotients, Powers, and Roots of Complex Numbers ..... 351
12.7 An Application to Alternating-current (ac) Circuits ..... 357
Equations ..... 363
Quick Chapter Review ..... 364
Review Exercises ..... 364
Practice Test ..... 365
13 Exponential and Logarithmic Functions ..... 366
13.1 Exponential Functions ..... 367
13.2 Logarithmic Functions ..... 369
13.3 Properties of Logarithms ..... 373
13.4 Logarithms to the Base 10 ..... 378
13.5 Natural Logarithms ..... 381
13.6 Exponential and Logarithmic Equations ..... 384
13.7 Graphs on Logarithmic and Semilogarithmic Paper ..... 388
Equations ..... 392
Quick Chapter Review ..... 392
Review Exercises ..... 392
Practice Test ..... 394
14 Additional Types of Equations and Systems of Equations ..... 395
14.1 Graphical Solution of Systems of Equations ..... 396
14.2 Algebraic Solution of Systems of Equations ..... 399
14.3 Equations in Quadratic Form ..... 403
14.4 Equations with Radicals ..... 406
Quick Chapter Review ..... 410
Review Exercises ..... 410
Practice Test ..... 411
15 Equations of Higher Degree ..... 412
15.1 The Remainder and Factor Theorems; Synthetic Division ..... 413
15.2 The Roots of an Equation ..... 418
15.3 Rational and Irrational Roots ..... 423
Equations ..... 429
Quick Chapter Review ..... 429
Review Exercises ..... 429
Practice Test ..... 430
16 Matrices; Systems of Linear Equations ..... 431
16.1 Matrices: Definitions and Basic Operations ..... 432
16.2 Multiplication of Matrices ..... 436
16.3 Finding the Inverse of a Matrix ..... 441
16.4 Matrices and Linear Equations ..... 446
16.5 Gaussian Elimination ..... 450
16.6 Higher-order Determinants ..... 454
Equations ..... 460
Quick Chapter Review ..... 460
Review Exercises ..... 461
Practice Test ..... 463
17 Inequalities ..... 464
17.1 Properties of Inequalities ..... 465
17.2 Solving Linear Inequalities ..... 469
17.3 Solving Nonlinear Inequalities ..... 474
17.4 Inequalities Involving Absolute Values ..... 481
17.5 Graphical Solution of Inequalities with Two Variables ..... 484
17.6 Linear Programming ..... 487
Equations ..... 491
Quick Chapter Review ..... 491
Review Exercises ..... 491
Practice Test ..... 493
18 Variation ..... 494
18.1 Ratio and Proportion ..... 495
18.2 Variation ..... 499
Equations ..... 505
Quick Chapter Review ..... 505
Review Exercises ..... 505
Practice Test ..... 508
19 Sequences and the Binomial Theorem ..... 509
19.1 Arithmetic Sequences ..... 510
19.2 Geometric Sequences ..... 515
19.3 Infinite Geometric Series ..... 519
19.4 The Binomial Theorem ..... 522
Equations ..... 527
Quick Chapter Review ..... 527
Review Exercises ..... 528
Practice Test ..... 530
20 Additional Topics in Trigonometry ..... 531
20.1 Fundamental Trigonometric Identities ..... 532
20.2 The Sum and Difference Formulas ..... 538
20.3 Double-Angle Formulas ..... 543
20.4 Half-Angle Formulas ..... 547
20.5 Solving Trigonometric Equations ..... 550
20.6 The Inverse Trigonometric Functions ..... 554
Equations ..... 560
Quick Chapter Review ..... 561
Review Exercises ..... 561
Practice Test ..... 563
21 Plane Analytic Geometry ..... 564
21.1 Basic Definitions ..... 565
21.2 The Straight Line ..... 569
21.3 The Circle ..... 575
21.4 The Parabola ..... 580
21.5 The Ellipse ..... 584
21.6 The Hyperbola ..... 589
21.7 Translation of Axes ..... 595
21.8 The Second-degree Equation ..... 598
21.9 Rotation of Axes ..... 601
21.10 Polar Coordinates ..... 605
21.11 Curves in Polar Coordinates ..... 609
Equations ..... 612
Quick Chapter Review ..... 613
Review Exercises ..... 614
Practice Test ..... 617
22 Introduction to Statistics ..... 618
22.1 Frequency Distributions ..... 619
22.2 Measures of Central Tendency ..... 623
22.3 Standard Deviation ..... 627
22.4 Normal Distributions ..... 631
22.5 Statistical Process Control ..... 637
22.6 Linear Regression ..... 642
22.7 Nonlinear Regression ..... 647
Equations ..... 650
Quick Chapter Review ..... 651
Review Exercises ..... 651
Practice Test ..... 654
23 The Derivative ..... 655
23.1 Limits ..... 656
23.2 The Slope of a Tangent to a Curve ..... 664
23.3 The Derivative ..... 667
23.4 The Derivative as an Instantaneous Rate of Change ..... 671
23.5 Derivatives of Polynomials ..... 675
23.6 Derivatives of Products and Quotients of Functions ..... 680
23.7 The Derivative of a Power of a Function ..... 684
23.8 Differentiation of Implicit Functions ..... 690
23.9 Higher Derivatives ..... 693
Equations ..... 696
Quick Chapter Review ..... 697
Review Exercises ..... 697
Practice Test
24 Applications of the Derivative 700
24.1 Tangents and Normals ..... 701
24.2 Newton's Method for Solving Equations ..... 703
24.3 Curvilinear Motion ..... 707
24.4 Related Rates ..... 711
24.5 Using Derivatives in Curve Sketching ..... 715
24.6 More on Curve Sketching ..... 721
24.7 Applied Maximum and Minimum Problems ..... 726
24.8 Differentials and Linear Approximations ..... 733
Equations ..... 737
Quick Chapter Review ..... 737
Review Exercises ..... 737
Practice Test ..... 741
25 Integration ..... 742
25.1 Antiderivatives ..... 743
25.2 The Indefinite Integral ..... 745
25.3 The Area Under a Curve ..... 750
25.4 The Definite Integral ..... 755
25.5 Numerical Integration: The Trapezoidal Rule ..... 758
25.6 Simpson's Rule ..... 761
Equations ..... 765
Quick Chapter Review ..... 765
Review Exercises ..... 765
Practice Test ..... 767
26 Applications of Integration ..... 768
26.1 Applications of the Indefinite Integral ..... 769
26.2 Areas by Integration ..... 773
26.3 Volumes by Integration ..... 779
26.4 Centroids ..... 784
26.5 Moments of Inertia ..... 790
26.6 Other Applications ..... 795
Equations ..... 800
Quick Chapter Review ..... 802
Review Exercises ..... 802
Practice Test ..... 804
27 Differentiation of Transcendental Functions ..... 805
27.1 Derivatives of the Sine and Cosine Functions ..... 806
27.2 Derivatives of the Other Trigonometric Functions ..... 810
27.3 Derivatives of the Inverse Trigonometric Functions ..... 813
27.4 Applications ..... 816
27.5 Derivative of the Logarithmic Function ..... 821
27.6 Derivative of the Exponential Function ..... 825
27.7 L'Hospital's Rule ..... 828
27.8 Applications ..... 832
Equations ..... 835
Quick Chapter Review ..... 836
Review Exercises ..... 836
Practice Test ..... 839
28 Methods of Integration ..... 840
28.1 The General Power Formula ..... 841
28.2 The Basic Logarithmic Form ..... 843
28.3 The Exponential Form ..... 847
28.4 Basic Trigonometric Forms ..... 850
28.5 Other Trigonometric Forms ..... 854
28.6 Inverse Trigonometric Forms ..... 858
28.7 Integration by Parts ..... 862
28.8 Integration by Trigonometric Substitution ..... 866
28.9 Integration by Partial Fractions: Nonrepeated Linear Factors ..... 869
28.10 Integration by Partial Fractions: Other Cases ..... 872
28.11 Integration by Use of Tables ..... 877
Equations ..... 880
Quick Chapter Review ..... 881
Review Exercises ..... 881
Practice Test ..... 883
29 Partial Derivatives and Double Integrals ..... 884
29.1 Functions of Two Variables ..... 885
29.2 Curves and Surfaces in Three Dimensions ..... 888
29.3 Partial Derivatives ..... 894
29.4 Double Integrals ..... 898
Equations ..... 902
Quick Chapter Review ..... 902
Review Exercises ..... 902
Practice Test ..... 903
30 Expansion of Functions in Series ..... 904
30.1 Infinite Series ..... 905
30.2 Maclaurin Series ..... 909
30.3 Operations with Series ..... 913
30.4 Computations by Use of Series Expansions ..... 917
30.5 Taylor Series ..... 920
30.6 Introduction to Fourier Series ..... 923
30.7 More About Fourier Series ..... 930
Equations ..... 935
Quick Chapter Review ..... 936
Review Exercises ..... 937
Practice Test
31 Differential Equations ..... 939
31.1 Solutions of Differential Equations ..... 940
31.2 Separation of Variables ..... 942
31.3 Integrating Combinations ..... 945
31.4 The Linear Differential Equation of the First Order ..... 947
31.5 Numerical Solutions of First-order Equations ..... 950
31.6 Elementary Applications ..... 953
31.7 Higher-order Homogeneous Equations ..... 959
31.8 Auxiliary Equation with Repeated or Complex Roots ..... 963
31.9 Solutions of Nonhomogeneous Equations ..... 966
31.10 Applications of Higher-order Equations ..... 971
31.11 Laplace Transforms ..... 978
31.12 Solving Differential Equations by Laplace Transforms ..... 983
Equations ..... 987
Quick Chapter Review ..... 988
Review Exercises ..... 988
Practice Test ..... 990
APPENDIX A Solving Word Problems ..... A. 1
APPENDIX B Units of Measurement; The Metric System ..... A. 2
B. 1 Introduction ..... A. 2
B. 2 Reductions and Conversions ..... A. 5
APPENDIX C The Graphing Calculator ..... A. 8
C. 1 Introduction ..... A. 8
C. 2 The Graphing Calculator ..... A. 8
C. 3 Graphing Calculator Programs ..... A. 12
C. 4 The Advanced Graphing Calculator ..... A. 16
APPENDIX D Newton's Method ..... A. 24
APPENDIX E A Table of Integrals ..... A. 25
Answers to Odd-Numbered Exercises and Quick Chapter Reviews ..... B. 1
Solutions to Practice Test Problems ..... C. 1
Index of Applications ..... D. 1
Index of Writing Exercises ..... D. 11
Index ..... D. 13

This page intentionally left blank

## Scope of the Book

Basic Technical Mathematics with Calculus, Tenth Edition, is intended primarily for students in technical and pre-engineering technical programs or other programs for which coverage of basic mathematics is required.

Chapters 1 through 20 provide the necessary background for further study with an integrated treatment of algebra and trigonometry. Chapter 21 covers the basic topics of analytic geometry, and Chapter 22 gives an introduction to statistics. Fundamental topics of calculus are covered in Chapters 23 through 31. In the examples and exercises, numerous applications from the various fields of technology are included, primarily to indicate where and how mathematical techniques are used. However, it is not necessary that the student have a specific knowledge of the technical area from which any given problem is taken.

Most students using this text will have a background that includes some algebra and geometry. However, the material is presented in adequate detail for those who may need more study in these areas. The material presented here is sufficient for three to four semesters.

One of the principal reasons for the arrangement of topics in this text is to present material in an order that allows a student to take courses concurrently in allied technical areas, such as physics and electricity. These allied courses normally require a student to know certain mathematics topics by certain definite times; yet the traditional order of topics in mathematics courses makes it difficult to attain this coverage without loss of continuity. However, the material in this book can be rearranged to fit any appropriate sequence of topics. Another feature of this text is that certain topics traditionally included for mathematical completeness have been covered only briefly or have been omitted.

The approach used in this text is not unduly rigorous mathematically, although all appropriate terms and concepts are introduced as needed and given an intuitive or algebraic foundation. The aim is to help the student develop an understanding of mathematical methods without simply providing a collection of formulas. The text material is developed recognizing that it is essential for the student to have a sound background in algebra and trigonometry in order to understand and succeed in any subsequent work in mathematics.

## New to This Edition

The tenth edition of Basic Technical Mathematics with Calculus includes all the basic features of the earlier editions. Specifically, among the new features of this edition are the following:

- Many sections include revised explanatory material.
- Many examples have been rewritten.
- More examples now include technical applications.
- New exercises are included in nearly all sections.
- A new feature called Quick Chapter Review has been added.
- Changing units is now briefly introduced in an example in Section 1.4 with a few margin examples in Chapters 1 and 2. The more complete coverage is included in Appendix B as in earlier editions.


## NEW AND REVISED COVERAGE

A Quick Chapter Review before the Review Exercises of each chapter includes several brief true or false questions. Each question actively involves the student in the review and can be answered quickly when the student recognizes the topic covered.

## THE GRAPHING CALCULATOR

The graphing calculator is used throughout the text. The advanced graphing calculator (TI-89) is included primarily for use in the calculus chapters, but also now included are margin references to its use in the earlier chapters. There are over 270 calculator screens.

The coverage starts in Section 1.3, where it is used for calculational purposes, and its use for graphing starts in Section 3.5. Additional coverage of calculators, including 22 graphing calculator programs, is found in Appendix C.

NEW EXERCISES AND EXAMPLES
There are over 2300 new exercises, including over 500 that illustrate technical and scientific applications. There is a total of over 13,800 exercises, including over 3000 applied exercises, in the tenth edition.

There is a total of over 1400 worked examples, including over 350 that illustrate technical and scientific applications. Of the applied examples, over 60 are new to the tenth edition.

## Continuing Features

PAGE LAYOUT
Special attention has been given to the page layout. Nearly all examples are started and completed on the same page (of the 1400 examples, there are 9 exceptions, all but one of which are presented on facing pages). Also, all figures are shown immediately adjacent to the material in which they are discussed.

## CHAPTER INTRODUCTIONS

Each chapter introduction illustrates specific examples of how the development of technology has been related to the development of mathematics. In these introductions, it is shown that these past discoveries in technology led to some of the methods in mathematics, whereas in other cases mathematical topics already known were later very useful in bringing about advances in technology.

## SPECIAL EXPLANATORY COMMENTS

Throughout the book, special explanatory comments in color have been used in the examples to emphasize and clarify certain important points. Arrows are often used to indicate clearly the part of the example to which reference is made.

## PROBLEM SOLVING TECHNIQUES

Techniques and procedures that summarize the approaches in solving many types of problems have been clearly outlined in color-shaded boxes.

## IMPORTANT FORMULAS

Throughout the book, important formulas are set off and displayed so that they can be easily referenced for use.

## SUBHEADS AND KEY TERMS

Many sections include subheads to indicate where the discussion of a new topic starts within the section. Other key terms are noted in the margin for emphasis and easy reference.

## SPECIAL CAUTION AND NOTE INDICATORS

Two special margin indicators (as shown at the left) are used. The caution indicator

## CAUTION

 NOTE identifies errors students commonly make or places where they frequently have difficulty. The note indicator points out material that is of particular importance in developing or understanding the topic under discussion. There are now over 450 of these indicators, an increase of over 150.
## CHAPTER AND SECTION CONTENTS

A listing of section titles for each chapter is given on the introductory page of the chapter. Also, a listing of the key topics of each section is given below the section number and title on the first page of the section. This gives the student and instructor a quick preview of the chapter and section contents.

## EXAMPLE DESCRIPTIONS

A brief descriptive title is given with each example number. This gives an easy reference for the example, particularly when reviewing the contents of the section.

## PRACTICE EXERCISES

Most sections include some practice exercises in the margin. They are included so that a student is more actively involved in the learning process and can check his or her understanding of the material. They can also be used for classroom exercises. The answers to these exercises are given at the end of the exercises set for the section. There are over 450 of these exercises, of which over 100 are new to the tenth edition.

EXERCISES DIRECTLY REFERENCED TO TEXT EXAMPLES
The first few exercises in most of the text sections are referenced directly to a specific example of the section. These examples are worded so that it is necessary for the student to refer to the example in order to complete the required solution. In this way, the student should be able to better review and understand the text material before attempting to solve the exercises that follow.

## WRITING EXERCISES

One specific writing exercise is included at the end of each chapter. These exercises give the student practice in explaining their solutions. Also there are over 420 additional exercises through the book (at least seven in each chapter) that require at least a sentence or two of explanation as part of the answer. These are noted by the $W$ symbol next to the exercise number. A special index of Writing Exercises is included at the back of the book.

## WORD PROBLEMS

There are over 130 examples throughout the text that show complete solutions of word problems. Of these over 20 are new to the tenth edition. There are nearly 1000 exercises, of which over 200 are new, in which word problems are to be solved.

## EQUATIONS, CHAPTER REVIEW, REVIEW EXERCISES, PRACTICE TESTS

At the end of each chapter, all important equations are listed together for easy reference. Each chapter is also followed by a Quick Chapter Review (as previously noted) and a set of review exercises that covers all the material in the chapter. Following the review exercises is a chapter practice test that students can use to check their understanding of the material. Solutions to all practice test problems are given in the back of the book.

## APPLICATIONS AND UNITS OF MEASUREMENTS

Examples and exercises illustrate the application of mathematics in all fields of technology. Many relate to modern technology such as computer design, electronics, solar energy, lasers fiber optics, the environment, and space technology. Others examples and exercises relate to technologies such as aeronautics, architecture, automotive, business, chemical, civil, construction, energy, environmental, fire science, machine, medical, meteorology, navigation, police, refrigeration, seismology, and wastewater.

## FIGURES

There are over 1600 figures in the text, over 110 (including over 40 new calculator screens) of which are new to the tenth edition.

## MARGIN NOTES

Throughout the text, some margin notes point out relevant historical events in mathematics and technology. Other margin notes are used to make specific comments related to the text material. Also, where appropriate, equations from earlier material are shown for reference in the margin. There is a total of over 430 of these notes, of which over 60 are new to the tenth edition.

## ANSWERS TO EXERCISES

The answers to all odd-numbered exercises (except the end-of-chapter writing exercises) are given near the end of the book. The Student's Solution Manual contains solutions to every other odd-numbered exercise and the Instructor's Solution Manual contains solutions to all section exercises.

## FLEXIBILITY OF MATERIAL COVERAGE

The order of coverage can be changed in many places and certain sections may be omitted without loss of continuity of coverage. Users of earlier editions have indicated successful use of numerous variations in coverage. Any changes will depend on the type of course and completeness required.

## Supplements <br> SUPPLEMENTS FOR THE INSTRUCTOR

To access supplementary materials online, instructors need to request an instructor access code. Go to www.pearsonhighered.com/irc, where you can register for an instructor access code. Within 48 hours after registering, you will receive a confirming email including an instructor access code. Once you have received your code, go to the site and $\log$ on for full instructions on downloading the materials you wish to use.

## Instructor's Solutions Manual

The Instructor's Solution Manual by Bob Martin contains detailed solutions to every section exercise, including review exercises.

## TestGen with Algorithmically Generated Questions

Instructors can easily create tests from textbook section objectives. Algorithmically generated questions allow unlimited versions. Instructors can edit problems or create their own using the built-in question editor to generate graphs, import graphics, and insert math notation, insert variable numbers, or text. Tests can be printed or administered online via the Web or other network.

## MyMathLab ${ }^{\circledR}$ Online Course (access code required)

MyMathLab delivers proven results in helping individual students succeed.

- MyMathLab has a consistently positive impact on the quality of learning in higher education math instruction. MyMathLab can be successfully implemented in any environment-lab-based, hybrid, fully online, traditional—and demonstrates the quantifiable difference that integrated usage has on student retention, subsequent success, and overall achievement.
- MyMathLab's comprehensive online gradebook automatically tracks your students' results on tests, quizzes, homework, and in the study plan. You can use the gradebook to quickly intervene if your students have trouble, or to provide positive feedback on a job well done. The data within MyMathLab is easily exported to a variety of spreadsheet programs, such as Microsoft Excel. You can determine which points of data you want to export, and then analyze the results to determine success.

MyMathLab provides engaging experiences that personalize, stimulate, and measure learning for each student.

- Exercises: The homework and practice exercises in MyMathLab are correlated to the exercises in the textbook, and they regenerate algorithmically to give students unlimited opportunity for practice and mastery. The software offers immediate, helpful feedback when students enter incorrect answers.
- Multimedia Learning Aids: Exercises include guided solutions, sample problems, animations, videos, and eText clips for extra help at point-of-use.
- Expert Tutoring: Although many students describe the whole of MyMathLab as "like having your own personal tutor," students using MyMathLab do have access to live tutoring from Pearson, from qualified math and statistics instructors.
And, MyMathLab comes from a trusted partner with educational expertise and an eye on the future.
- Knowing that you are using a Pearson product means knowing that you are using quality content. That means that our eTexts are accurate and our assessment tools work. Whether you are just getting started with MyMathLab, or have a question along the way, we're here to help you learn about our technologies and how to incorporate them into your course.

To learn more about how MyMathLab combines proven learning applications with powerful assessment, visit www.mymathlab.com or contact your Pearson representative.

## Math $X L^{\circledR}$ Online Course (access code required)

MathXL ${ }^{\circledR}$ is the homework and assessment engine that runs MyMathLab. (MyMathLab is MathXL plus a learning management system.)

With MathXL, instructors can:

- Create, edit, and assign online homework and tests using algorithmically generated exercises correlated at the objective level to the textbook.
- Create and assign their own online exercises and import TestGen tests for added flexibility.
- Maintain records of all student work tracked in MathXL's online gradebook.

With MathXL, students can:

- Take chapter tests in MathXL and receive personalized study plans and/or personalized homework assignments based on their test results.
- Use the study plan and/or the homework to link directly to tutorial exercises for the objectives they need to study.
- Access supplemental animations and video clips directly from selected exercises.

MathXL is available to qualified adopters. For more information, visit our website at www.mathxl.com, or contact your Pearson representative.

## SUPPLEMENT FOR THE STUDENT

Student's Solutions Manual (ISBN: 0-13-325351-1)
The Student's Solutions Manual by Bob Martin includes detailed solutions for every other odd-numbered section exercise.

## Acknowledgments

Special thanks go to Bob Martin and John Garlow, both of Tarrant County College, Arlington, TX, for preparing the Answer Book, the Student's Solutions Manual, and the Instructor's Solutions Manual. Thanks also to Suzanne Garlow of Bedford, TX, for the keyboarding and typesetting of these supplements. Also, I again wish to thank Thomas Stark of Cincinnati State Technical and Community College for the RISERS approach to solving word problems in Appendix A.

My thanks and gratitude go to Jim Bryant, who drew all of the chapter-opener illustrations. I again greatly appreciate the invaluable help of Bob Martin in checking the answers to all of the exercises.

I gratefully acknowledge the cooperation and support of my editor, Sara Eilert. Also, I wish to acknowledge the very fine work of Nancy Kincade at PreMediaGlobal, who set all the type for this edition.

Also of great assistance during the production of this edition were Rex Davidson, Doug Greive, Jean Choe, Ruth Berry, Carl Cottrell, Eileen Moore, Mary Durnwald, and Marty Wright.

The author gratefully acknowledges the contributions of the following reviewers of the ninth and tenth editions. Their detailed comments and suggestions were of great assistance.

Imad Abouzahr
Oklahoma State University
Laurie Bishop
McKicken College
Ruth Dalrymple
St. Philips College
Philip J. Darcy
Dutchess Community College
Mark Ernsthausen
Monroe Community College
Raymond Travis Flewelling
Wilson Community College
Barbara Harris
DeVry University-Chicago
Jeffrey Ingram
Atlanta Technical College
Joe Jordan
John Tyler Community College
Rosa Kavanaugh
Ozarks Technical Community College

Kellie Knox
Southwest Wisconsin Technical College
Nestor Komar
Niagara College
Larry Mason
Fairmont State University
Todd Mattson
DeVry University, DuPage Campus
Scott Randby
University of Akron
Hank Regis
Valencia Community College
Janet Schachtner
San Jacinto College
Terri Seiver
San Jacinto College
Elizabeth Tregoning
Southern Illinois College
Richard Watkins
Tidewater Community College

Finally, I wish to sincerely thank again each of the over 350 reviewers of the ten editions of this text. Their comments have helped further the education of more than two million students during the fifty years of this text since it was first published in 1964.
A.J.W.

# Basic Technical Mathematics with Calculus 

This page intentionally left blank

# $[1]$ <br> <br> Basic Algebraic Operations 

 <br> <br> Basic Algebraic Operations}

### 1.1 Numbers

1.2 Fundamental Operations of Algebra
1.3 Calculators andApproximate Numbers
1.4 Exponents
1.5 Scientific Notation
1.6 Roots and Radicals
1.7 Addition and Subtraction of Algebraic Expressions
1.8 Multiplication of Algebraic Expressions
1.9 Division of Algebraic Expressions
1.10 Solving Equations
1.11 Formulas and LiteralEquations
1.12 Applied Word Problems
CHAPTER EQUATIONS QUICK CHAPTER REVIEW REVIEW EXERCISES PRACTICE TEST

Interest in things such as the land on which they lived, the structures they built, and the motion of the planets led people in early civilizations to keep records and to create methods of counting and measuring. In turn, some of the early ideas of arithmetic, geometry, and trigonometry were developed. From such beginnings, mathematics has played a key role in the great advances in science and technology.
Often, mathematical methods were developed from studies made in sciences, such as astronomy and physics, to better describe and understand the subject being studied. Some of these methods resulted from the needs in a particular area of application.
Many people were interested in the math itself and added to what was then known. Although this additional mathematical knowledge may not have been related to applications at the time it was developed, it often later became useful in applied areas.
In the chapter introductions that follow, examples of the interaction of technology and mathematics are given. From these examples and the text material, it is hoped you will better understand the important role that math has had and still has in technology. In this text, there are applications from technologies including (but not limited to) aeronautical, business, communications, electricity, electronics, engineering, environmental, heat and air conditioning, mechanical, medical, meteorology, petroleum, product design, solar, and space. To solve the applied problems in this text will require a knowledge of the mathematics presented but will not require prior knowledge of the field of application.
We begin by reviewing the concepts that deal with numbers and symbols. This will enable us to develop topics in algebra, an understanding of which is essential for progress in other areas such as geometry, trigonometry, and calculus.

The Great Pyramid of Giza in Egypt was built about 4500 years ago, about 600 years after the use of decimal numbers by the Egyptians.

In the 1550's, 1600s, and 1700s, discoveries in astronomy and the need for more accurate maps and instruments in navigation were very important in leading scientists and mathematicians to develop useful new ideas and methods in mathematics.
Late in 1800s, scientists were studying the nature of light. This led to a mathematic prediction of the existence of radio waves, now used in many types of communication. Alṣo, in the 1900s and 2000s, mathematics has been vital to the development of electronics and space travel.


### 1.1 Numbers

Real Number System • Number Line • Absolute Value - Signs of Inequality • Reciprocal • Denominate Numbers • Literal Numbers

Irrational numbers were discussed by the Greek mathematician Pythagoras in about 540 b.c.e.

- For reference, $\pi=3.14159265 \ldots$

A notation that is often used for repeating decimals is to place a bar over the digits that repeat. Using this notation we can write $\frac{1121}{1665}=0.6 \overline{732}$ and $\frac{2}{3}=0 . \overline{6}$.

Real Numbers

| Rational <br> numbers | Irrational <br> numbers |
| :---: | :---: |
| Integers |  |

Fig. I.I

Real numbers and imaginary numbers are both included in the complex number system. See Exercise 37.

In technology and science, as well as in everyday life, we use the very familiar counting numbers, or natural numbers $1,2,3$, and so on. Because it is necessary and useful to use negative numbers as well as positive numbers in mathematics and its applications, the natural numbers are called the positive integers, and the numbers $-1,-2,-3$, and so on are the negative integers.

Therefore, the integers include the positive integers, the negative integers, and zero, which is neither positive nor negative. This means that the integers are the numbers . . . , $-3,-2,-1,0,1,2,3 \ldots$ and so on.

A rational number is a number that can be expressed as the division of one integer $\boldsymbol{a}$ by another nonzero integer $\boldsymbol{b}$, and can be represented by the fraction $\boldsymbol{a} / \boldsymbol{b}$. Here $\boldsymbol{a}$ is the numerator and $\boldsymbol{b}$ is the denominator. Here we have used algebra by letting letters represent numbers.

Another type of number, an irrational number, cannot be written in the form of a fraction that is the division of one integer by another integer. The following example illustrates integers, rational numbers, and irrational numbers.

## EXAMPLE 1 Identifying rational numbers and irrational numbers

The numbers 5 and -19 are integers. They are also rational numbers because they can be written as $\frac{5}{1}$ and $\frac{-19}{1}$, respectively. Normally, we do not write the 1 's in the denominators.

The numbers $\frac{5}{8}$ and $\frac{-11}{3}$ are rational numbers because the numerator and the denominator of each are integers.

The numbers $\sqrt{2}$ and $\pi$ are irrational numbers. It is not possible to find two integers, one divided by the other, to represent either of these numbers. It can be shown that square roots (and other roots) that cannot be expressed exactly in decimal form are irrational. Also, $\frac{22}{7}$ is sometimes used as an approximation for $\pi$, but it is not equal exactly to $\pi$. We must remember that $\frac{22}{7}$ is rational and $\pi$ is irrational.

The decimal number 1.5 is rational since it can be written as $\frac{3}{2}$. Any such terminating decimal is rational. The number $0.6666 \ldots$, where the 6 's continue on indefinitely, is rational because we may write it as $\frac{2}{3}$. In fact, any repeating decimal (in decimal form, a specific sequence of digits is repeated indefinitely) is rational. The decimal number $0.6732732732 \ldots$ is a repeating decimal where the sequence of digits 732 is repeated indefinitely ( $\left.0.6732732732 \ldots=\frac{1121}{1665}\right)$.

The integers, the rational numbers, and the irrational numbers, including all such numbers that are positive, negative, or zero, make up the real number system (see Fig. 1.1). There are times we will encounter an imaginary number, the name given to the square root of a negative number. Imaginary numbers are not real numbers and will be discussed in Chapter 12. However, unless specifically noted, we will use real numbers. Until Chapter 12, it will be necessary to only recognize imaginary numbers when they occur.

Also in Chapter 12, we will consider complex numbers, which include both the real numbers and imaginary numbers. See Exercise 37 of this section.

## EXAMPLE 2 Identifying real numbers and imaginary numbers

The number 7 is an integer. It is also rational because $7=\frac{7}{1}$, and it is a real number since the real numbers include all the rational numbers.

The number $3 \pi$ is irrational, and it is real because the real numbers include all the irrational numbers.

The numbers $\sqrt{-10}$ and $-\sqrt{-7}$ are imaginary numbers.
The number $\frac{-3}{7}$ is rational and real. The number $-\sqrt{7}$ is irrational and real.
The number $\frac{\pi}{6}$ is irrational and real. The number $\frac{\sqrt{-3}}{2}$ is imaginary.

Fractions were used by early Egyptians and Babylonians. They were used for calculations that involved parts of measurements, property, and possessions.

The Number Line

Practice Exercises

1. $|-4.2|=$ ? $\quad$ 2. $-\left|-\frac{3}{4}\right|=$ ?

A fraction may contain any number or symbol representing a number in its numerator or in its denominator. The fraction indicates the division of the numerator by the denominator, as we previously indicated in writing rational numbers. Therefore, a fraction may be a number that is rational, irrational, or imaginary.

## EXAMPLE 3 Fractions

The numbers $\frac{2}{7}$ and $\frac{-3}{2}$ are fractions, and they are rational.
The numbers $\frac{\sqrt{2}}{9}$ and $\frac{6}{\pi}$ are fractions, but they are not rational numbers. It is not possible to express either as one integer divided by another integer.

The number $\frac{\sqrt{-5}}{6}$ is a fraction, and it is an imaginary number.
Real numbers may be represented by points on a line. We draw a horizontal line and designate some point on it by $O$, which we call the origin (see Fig. 1.2). The integer zero is located at this point. Equal intervals are marked to the right of the origin, and the positive integers are placed at these positions. The other positive rational numbers are located between the integers. The points that cannot be defined as rational numbers represent irrational numbers. We cannot tell whether a given point represents a rational number or an irrational number unless it is specifically marked to indicate its value.


Fig. I. 2

The negative numbers are located on the number line by starting at the origin and marking off equal intervals to the left, which is the negative direction. As shown in Fig. 1.2, the positive numbers are to the right of the origin and the negative numbers are to the left of the origin. Representing numbers in this way is especially useful for graphical methods.

We next define another important concept of a number. The absolute value of a positive number is the number itself, and the absolute value of a negative number is the corresponding positive number. On the number line, we may interpret the absolute value of a number as the distance (which is always positive) between the origin and the number. Absolute value is denoted by writing the number between vertical lines, as shown in the following example.

## EXAMPLE 4 Absolute value

The absolute value of 6 is 6 , and the absolute value of -7 is 7 . We write these as $|6|=6$ and $|-7|=7$. See Fig. 1.3.


Fig. 1.3
Other examples are $\left|\frac{7}{5}\right|=\frac{7}{5},|-\sqrt{2}|=\sqrt{2},|0|=0,-|\pi|=-\pi,|-5.29|=5.29$, $-|-9|=-9$ since $|-9|=9$.

The symbols $=,<$, and $>$ were introduced by English mathematicians in the late 1500s.

Practice Exercises
Place the correct sign of inequality ( $<$ or $>$ ) between the given numbers.
3. -54
4. $0-3$

Practice Exercise
5. Find the reciprocals of
(a) -4
(b) $\frac{3}{8}$

On the number line, if a first number is to the right of a second number, then the first number is said to be greater than the second. If the first number is to the left of the second, it is less than the second number. The symbol > designates "is greater than," and the symbol $<$ designates "is less than." These are called signs of inequality. See Fig. 1.4.

EXAMPLE 5 Signs of inequality


Fig. I. 4

Every number, except zero, has a reciprocal. The reciprocal of a number is 1 divided by the number.

## EXAMPLE 6 Reciprocal

The reciprocal of 7 is $\frac{1}{7}$. The reciprocal of $\frac{2}{3}$ is

$$
\frac{1}{\frac{2}{3}}=1 \times \frac{3}{2}=\frac{3}{2} \quad \text { invert denominator and multiply (from arithmetic) }
$$

The reciprocal of 0.5 is $\frac{1}{0.5}=2$. The reciprocal of $-\pi$ is $-\frac{1}{\pi}$. Note that the negative sign is retained in the reciprocal of a negative number.

We showed the multiplication of 1 and $\frac{3}{2}$ as $1 \times \frac{3}{2}$. We could also show it as $1 \cdot \frac{3}{2}$ or $1\left(\frac{3}{2}\right)$. We will often find the form with parentheses is preferable.

In applications, numbers that represent a measurement and are written with units of measurement are called denominate numbers. The next example illustrates the use of units and the symbols that represent them.

## EXAMPLE 7 Denominate numbers

To show that a certain TV weighs 62 pounds, we write the weight as 62 lb .
To show that a giant redwood tree is 330 feet high, we write the height as 300 ft .
To show that the speed of a rocket is 1500 meters per second, we write the speed as $1500 \mathrm{~m} / \mathrm{s}$. (Note the use of s for second. We use s rather than sec.)

To show that the area of a computer chip is 0.75 square inch, we write the area as 0.75 in. ${ }^{2}$. (We will not use sq in.)

To show that the volume of water in a glass tube is 25 cubic centimeters, we write the volume as $25 \mathrm{~cm}^{3}$. (We will not use cu cm nor cc.)

It is usually more convenient to state definitions and operations on numbers in a general form. To do this, we represent the numbers by letters, called literal numbers. For example, if we want to say "If a first number is to the right of a second number on the number line, then the first number is greater than the second number," we can write "If $a$ is to the right of $b$ on the number line, then $a>b$." Another example of using a literal number is "The reciprocal of $n$ is $1 / n$."

Certain literal numbers may take on any allowable value, whereas other literal numbers represent the same value throughout the discussion. Those literal numbers that may vary in a given problem are called variables, and those literal numbers that are held fixed are called constants.

## EXAMPLE 8 Variables and constants

(a) The resistance of an electric resistor is $R$. The current $I$ in the resistor equals the voltage $V$ divided by $R$, written as $I=V / R$. For this resistor, $I$ and $V$ may take on various values, and $R$ is fixed. This means $I$ and $V$ are variables and $R$ is a constant. For a different resistor, the value of $R$ may differ.
(b) The fixed cost for a calculator manufacturer to operate a certain plant is $b$ dollars per day, and it costs $a$ dollars to produce each calculator. The total daily $\operatorname{cost} C$ to produce $n$ calculators is

$$
C=a n+b
$$

Here, $C$ and $n$ are variables, and $a$ and $b$ are constants, and the product of $a$ and $n$ is shown as $a n$. For another plant, the values of $a$ and $b$ would probably differ.

If specific numerical values of $a$ and $b$ are known, say $a=\$ 7$ per calculator and $b=\$ 3000$, then $C=7 n+3000$. Thus, constants may be numerical or literal.

## EXERCISES 1.1

In Exercises 1-4, make the given changes in the indicated examples of this section, and then answer the given questions.

1. In the first line of Example 1, change the 5 to -3 and the -19 to 14. What other changes must then be made in the first paragraph?
2. In Example 4, change the 6 to -6 . What other changes must then be made in the first paragraph?
3. In the left figure of Example 5, change the 2 to -6 . What other changes must then be made?
4. In Example 6, change the $\frac{2}{3}$ to $\frac{3}{2}$. What other changes must then be made?

In Exercises 5 and 6, designate each of the given numbers as being an integer, rational, irrational, real, or imaginary. (More than one designation may be correct.)
5. $3, \sqrt{-4},-\frac{\pi}{6}, \frac{1}{8}$
6. $-\sqrt{-6},-2.33, \frac{\sqrt{7}}{3},-6$

In Exercises 7 and 8, find the absolute value of each real number.
7. $3,-4,-\frac{\pi}{2}, \sqrt{-1}$
8. $-0.857, \sqrt{2},-\frac{19}{4}, \frac{\sqrt{-5}}{-2}$

In Exercises 9-16, insert the correct sign of inequality ( $>$ or $<$ ) between the given numbers.
9. 6
10. 75
11. $-\pi-3.1416$
12. -40
13. $-4 \quad-|-3|$
14. $-\sqrt{2} \quad-1.42$
15. $-\frac{1}{3} \quad-\frac{1}{2}$
16. $-0.6 \quad 0.2$

In Exercises 17 and 18, find the reciprocal of each number.
17. $3,-\frac{4}{\sqrt{3}}, \frac{y}{b}$
18. $-\frac{1}{3}, 0.25,2 x$

In Exercises 19 and 20, locate (approximately) each number on a number line as in Fig. 1.2.
19. $2.5,-\frac{12}{5}, \sqrt{3},-\frac{3}{4}$
20. $-\frac{\sqrt{2}}{2}, 2 \pi, \frac{123}{19},-\frac{7}{3}$

In Exercises 21-44, solve the given problems. Refer to Appendix B for units of measurement and their symbols.
21. Is an absolute value always positive? Explain.
22. Is -2.17 rational? Explain.
23. What is the reciprocal of the reciprocal of any positive or negative number?
24. Find a rational number between -0.9 and -1.0 that can be written with a denominator of 11 and an integer in the numerator.
25. Find a rational number between 0.13 and 0.14 that can be written with a numerator of 3 and an integer in the denominator.
26. If $b>a$ and $a>0$, is $|b-a|<|b|-|a|$ ?
27. List the following numbers in numerical order, starting with the smallest: $-1,9, \pi, \sqrt{5},|-8|,-|-3|,-3.1$.
28. List the following numbers in numerical order, starting with the smallest: $\frac{1}{5},-\sqrt{10},-|-6|,-4,0.25,|-\pi|$.
29. If $a$ and $b$ are positive integers and $b>a$, what type of number is represented by the following?
(a) $b-a$
(b) $a-b$
(c) $\frac{b-a}{b+a}$
30. If $a$ and $b$ represent positive integers, what kind of number is represented by (a) $a+b$, (b) $a / b$, and (c) $a \times b$ ?
31. For any positive or negative integer: (a) Is its absolute value always an integer? (b) Is its reciprocal always a rational number?
32. For any positive or negative rational number: (a) Is its absolute value always a rational number? (b) Is its reciprocal always a rational number?
33. Describe the location of a number $x$ on the number line when (a) $x>0$ and (b) $x<-4$.
34. Describe the location of a number $x$ on the number line when (a) $|x|<1$ and (b) $|x|>2$.
35. For a number $x>1$, describe the location on the number line of the reciprocal of $x$.
36. For a number $x<0$, describe the location on the number line of the number with a value of $|x|$.
37. A complex number is defined as $a+b j$, where $a$ and $b$ are real numbers and $j=\sqrt{-1}$. For what values of $a$ and $b$ is the complex number $a+b j$ a real number? (All real numbers and al imaginary numbers are also complex numbers.)
38. A sensitive gauge measures the total weight $w$ of a container and the water that forms in it as vapor condenses. It is found that $w=c \sqrt{0.1 t+1}$, where $c$ is the weight of the container and $t$ is the time of condensation. Identify the variables and constants.
39. In an electric circuit, the reciprocal of the total capacitance of two capacitors in series is the sum of the reciprocals of the capacitances. Find the total capacitance of two capacitances of 0.0040 F and 0.0010 F connected in series.
40. Alternating-current (ac) voltages change rapidly between positive and negative values. If a voltage of 100 V changes to -200 V , which is greater in absolute value?
41. The memory of a certain computer has $a$ bits in each byte. Express the number $N$ of bits in $n$ kilobytes in an equation. (A bit is a single digit, and bits are grouped in bytes in order to represent special characters. Generally, there are 8 bits per byte. If necessary, see Appendix B for the meaning of kilo.)
42. The computer design of the base of a truss is $x \mathrm{ft}$. long. Later it is redesigned and shortened by $y \mathrm{in}$. Give an equation for the length $L$, in inches, of the base in the second design.
43. In a laboratory report, a student wrote " $-20^{\circ} \mathrm{C}>-30^{\circ} \mathrm{C}$." Is this statement correct? Explain.
44. After 5 s , the pressure on a valve is less than $60 \mathrm{lb} / \mathrm{in.}^{2}$ (pounds per square inch). Using $t$ to represent time and $p$ to represent pressure, this statement can be written "for $t>5 \mathrm{~s}, p<60 \mathrm{lb} / \mathrm{in} .^{2}$." In this way, write the statement "when the current $I$ in a circuit is less than 4 A , the resistance $R$ is greater than $12 \Omega$ (ohms)."

## $\overline{\text { Answers to Practice Exercises }}$

1. 4.2
2. $-\frac{3}{4}$
3. $<$
4. $>$
5. (a) $-\frac{1}{4}$
(b) $\frac{8}{3}$

### 1.2 Fundamental Operations of Algebra

Fundamental Laws of Algebra - Operations on Positive and Negative Numbers - Order of Operations - Operations with Zero

## The Commutative and <br> Associative Laws

The Distributive Law

Note carefully the difference:
associative law: $5 \times(4 \times 2)$
distributive law: $5 \times(4+2)$

If two numbers are added, it does not matter in which order they are added. (For example, $5+3=8$ and $3+5=8$, or $5+3=3+5$.) This statement, generalized and accepted as being correct for all possible combinations of numbers being added, is called the commutative law for addition. It states that the sum of two numbers is the same, regardless of the order in which they are added. We make no attempt to prove this law in general, but accept that it is true.

In the same way, we have the associative law for addition, which states that the sum of three or more numbers is the same, regardless of the way in which they are grouped for addition. For example, $3+(5+6)=(3+5)+6$.

The laws just stated for addition are also true for multiplication. Therefore, the product of two numbers is the same, regardless of the order in which they are multiplied, and the product of three or more numbers is the same, regardless of the way in which they are grouped for multiplication. For example, $2 \times 5=5 \times 2$, and $5 \times(4 \times 2)=(5 \times 4) \times 2$.

Another very important law is the distributive law. It states that the product of one number and the sum of two or more other numbers is equal to the sum of the products of the first number and each of the other numbers of the sum. For example,

$$
5(4+2)=\stackrel{\rightharpoonup}{5} \times 4+\stackrel{\rightharpoonup}{5} \times 2
$$

In this case, it can be seen that the total is 30 on each side.
In practice, these fundamental laws of algebra are used naturally without thinking about them, except perhaps for the distributive law.

Not all operations are commutative and associative. For example, division is not commutative, because the order of division of two numbers does matter. For instance, $\frac{6}{5} \neq \frac{5}{6}(\neq$ is read "does not equal)". (Also, see Exercise 52.)

Note the meaning of identity.

From Section 1.1, we recall that a positive number is preceded by no sign. Therefore, in using these rules, we show the "sign" of a positive number by simply writing the number itself.

Using literal numbers, the fundamental laws of algebra are as follows:
Commutative law of addition: $a+b=b+a$
Associative law of addition: $a+(b+c)=(a+b)+c$
Commutative law of multiplication: $a b=b a$
Associative law of multiplication: $a(b c)=(a b) c$
Distributive law: $a(b+c)=a b+a c$
Each of these laws is an example of an identity, in that the expression to the left of the $=$ sign equals the expression to the right for any value of each of $a, b$, and $c$.

## OPERATIONS ON POSITIVE AND NEGATIVE NUMBERS

When using the basic operations (addition, subtraction, multiplication, division) on positive and negative numbers, we determine the result to be either positive or negative according to the following rules.

Addition of two numbers of the same sign Add their absolute values and assign the sum their common sign.

## EXAMPLE 1 Adding numbers of the same sign

(a) $2+6=8 \quad$ the sum of two positive numbers is positive
(b) $-2+(-6)=-(2+6)=-8$ the sum of two negative numbers is negative

The negative number -6 is placed in parentheses because it is also preceded by a plus sign showing addition. It is not necessary to place the -2 in parentheses.
Addition of two numbers of different signs Subtract the number of smaller absolute value from the number of larger absolute value and assign to the result the sign of the number of larger absolute value.

## EXAMPLE 2 Adding numbers of different signs

(a) $2+(-6)=-(6-2)=-4 \downarrow$ the negative 6 has the larger absolute value
(b) $-6+2=-(6-2)=-4 \downarrow$
(c) $6+(-2)=6-2=4 \longleftarrow$ the positive 6 has the larger absolute value
(d)

$$
-2+6=6-2=4 \longleftarrow \text { the subtraction of absolute values }
$$

Subtraction of one number from another Change the sign of the number being subtracted and change the subtraction to addition. Perform the addition.

## EXAMPLE 3 Subtracting positive and negative numbers

(a) $2-6=2+(-6)=-(6-2)=-4$

Note that after changing the subtraction to addition, and changing the sign of 6 to make it -6 , we have precisely the same illustration as Example 2(a).
(b) $-2-6=-2+(-6)=-(2+6)=-8$

Note that after changing the subtraction to addition, and changing the sign of 6 to make it -6 , we have precisely the same illustration as Example 1(b).
(c) $-a-(-a)=-a+a=0$

This shows that subtracting a number from itself results in zero, even if the number is negative. Therefore, subtracting a negative number is equivalent to adding a positive number of the same absolute value.
(d) $-2-(-6)=-2+6=+4=4$
(e) The change in temperature from $-12^{\circ} \mathrm{C}$ to $-26^{\circ} \mathrm{C}$ is $-26^{\circ} \mathrm{C}-\left(-12^{\circ} \mathrm{C}\right)=-26^{\circ} \mathrm{C}+12^{\circ} \mathrm{C}=-14^{\circ} \mathrm{C}$

Practice Exercises
Evaluate: 1. $-5-(-8)$
2. $-5(-8)$

Note that $20 \div(2+3)=\frac{20}{2+3}$, whereas $20 \div 2+3=\frac{20}{2}+3$.

Multiplication and division of two numbers The product (or quotient) of two numbers of the same sign is positive. The product (or quotient) of two numbers of different signs is negative.

## EXAMPLE 4 Multiplying and dividing positive and negative numbers

(a)
(a) $3(12)=3 \times 12=36 \quad \frac{12}{3}=4$
result is positive if both numbers are positive
(b) $-3(-12)=3 \times 12=36 \quad \frac{-12}{-3}=4$
(c) $3(-12)=-(3 \times 12)=-36$
$\frac{-12}{3}=-\frac{12}{3}=-4$
result is positive if both numbers are negative
result is negative if one
number is positive and the other is negative
the orher is negative
(d) $-3(12)=-(3 \times 12)=-36 \quad \frac{12}{-3}=-\frac{12}{3}=-4$

## ORDER OF OPERATIONS

Often, how we are to combine numbers is clear by grouping the numbers using symbols such as parentheses, ( ), the bar, $\qquad$ , between the numerator and denominator of a fraction, and vertical lines for absolute value. Otherwise, for an expression in which there are several operations, we use the following order of operations.

## Order of Operations

1. Operations within specific groupings are done first.
2. Perform multiplications and divisions (from left to right).
3. Then perform additions and subtractions (from left to right).

## EXAMPLE 5 Order of operations

(a) $20 \div(2+3)$ is evaluated by first adding $2+3$ and then dividing. The grouping of $2+3$ is clearly shown by the parentheses. Therefore,
$20 \div(2+3)=20 \div 5=4$.
(b) $20 \div 2+3$ is evaluated by first dividing 20 by 2 and then adding. No specific grouping is shown, and therefore the division is done before the addition. This means $20 \div 2+3=10+3=13$.
CAUTION (c) $16-2 \times 3$ is evaluated by first multiplying 2 by 3 and then subtracting. We do not first subtract 2 from 16 . Therefore, $16-2 \times 3=16-6=10$.
$\overline{\text { Practice Exercises }}$
Evaluate: 3. $12-6 \div 2$
4. $16 \div(2 \times 4)$
(d) $16 \div 2 \times 4$ is evaluated by first dividing 16 by 2 and then multiplying. From left to right, the division occurs first. Therefore, $16 \div 2 \times 4=8 \times 4=32$.
(e) $|3-5|-|-3-6|$ is evaluated by first performing the subtractions within the absolute value vertical bars, then evaluating the absolute values, and then subtracting. This means that $|3-5|-|-3-6|=|-2|-|-9|=2-9=-7$.

When evaluating expressions, it is generally more convenient to change the operations and numbers so that the result is found by the addition and subtraction of positive numbers. When this is done, we must remember that

$$
\begin{align*}
& a+(-b)=a-b  \tag{1.1}\\
& a-(-b)=a+b \tag{1.2}
\end{align*}
$$

Practice Exercises
Evaluate: 5. $2(-3)-\frac{4-8}{2}$
6. $\frac{|5-15|}{2}-\frac{-9}{3}$

Fig. I. 5

## EXAMPLE 6 Evaluating numerical expressions

(a) $7+(-3)-6=7-3-6=4-6=-2 \quad$ using Eq. (1.1)
(b) $\frac{18}{-6}+5-(-2)(3)=-3+5-(-6)=2+6=8 \quad$ using Eq. (1.2)
(c) $\frac{|3-15|}{-2}-\frac{8}{4-6}=\frac{12}{-2}-\frac{8}{-2}=-6-(-4)=-6+4=-2$
(d) $\frac{-12}{2-8}+\frac{5-1}{2(-1)}=\frac{-12}{-6}+\frac{4}{-2}=2+(-2)=2-2=0$

In illustration (b), we see that the division and multiplication were done before the addition and subtraction. In (c) and (d), we see that the groupings were evaluated first. Then we did the divisions, and finally the subtraction and addition.

## EXAMPLE 7 Evaluating in an application

A 3000-lb van going at $40 \mathrm{mi} / \mathrm{h}$ ran head-on into a $2000-\mathrm{lb}$ car going at $20 \mathrm{mi} / \mathrm{h}$. An insurance investigator determined the velocity of the vehicles immediately after the collision from the following calculation. See Fig. 1.5.

$$
\begin{aligned}
\frac{3000(40)+(2000)(-20)}{3000+2000} & =\frac{120,000+(-40,000)}{3000+2000}=\frac{120,000-40,000}{5000} \\
& =\frac{80,000}{5000}=16 \mathrm{mi} / \mathrm{h}
\end{aligned}
$$

The numerator and the denominator must be evaluated before the division is performed. The multiplications in the numerator are performed first, followed by the addition in the denominator and the subtraction in the numerator.

## OPERATIONS WITH ZERO

Because operations with zero tend to cause some difficulty, we will show them here.
If $a$ is a real number, the operations of addition, subtraction, multiplication, and division with zero are as follows:

$$
\begin{aligned}
& \boldsymbol{a}+\mathbf{0}=\boldsymbol{a} \\
& \boldsymbol{a}-\mathbf{0}=\boldsymbol{a} \quad 0-a=-\boldsymbol{a} \\
& \boldsymbol{a} \times \mathbf{0}=\mathbf{0} \\
& \mathbf{0} \div \boldsymbol{a}=\frac{\mathbf{0}}{\boldsymbol{a}}=\mathbf{0} \quad(\text { if } \boldsymbol{a} \neq \mathbf{0}) \quad(\neq \text { means "is not equal to" })
\end{aligned}
$$

## EXAMPLE 8 Operations with zero

(a) $5+0=5$
(b) $-6-0=-6$
(c) $0-4=-4$
(d) $\frac{0}{6}=0$
(e) $\frac{0}{-3}=0$
(f) $\frac{5 \times 0}{7}=\frac{0}{7}=0$

Note that there is no result defined for division by zero. To understand the reason for this, consider the results for $\frac{6}{2}$ and $\frac{6}{0}$.

$$
\frac{6}{2}=3 \quad \text { since } \quad 2 \times 3=6
$$

If $\frac{6}{0}=b$, then $0 \times b=6$. This cannot be true because $0 \times b=0$ for any value of $b$. Thus,

## division by zero is undefined

(The special case of $\frac{0}{0}$ is termed indeterminate. If $\frac{0}{0}=b$, then $0=0 \times b$, which is true for any value of $b$. Therefore, no specific value of $b$ can be determined.)

